CERO L0 PHODC O T

LUCA PALMIERI









A Federica,
il mio porto sicuro.



Contents

Foreword xiii
Preface XV
WhatIs This Book About . . . . . . . . . . . . . XV
Cloud-native applications . . . . . .. ... ... ... .. XV
Workinginateam . . . . .. ... L xvi

WhoIs ThisBook For . . . . . . . . . . xvii

1 Getting Started 1
1.1 Installing The Rust Toolchain . . . . ... ... .. ...... .. ............ 1
1.1.1  Compilation Targets . . . . ... ... ... ... ... ... .. .. ... ... 1

1.1.2  Release Channels . . . ... ... . ... ... . . . . ... 2

1.1.3  What Toolchains Do We Need? . . . ... ... ... ... ... ... ..... 2

12 ProjectSetup . . . . . . ... 3
1.3 IDEs. . . . e e e 4
1.3.1 Rust-analyzer . . ... ... ... .. ... ... 4

1.3.2  RustRover. . . . . . . . . . e 4

1.3.3  WhatShouldIUse? . . . . . . . . . 4

1.4 Inner DevelopmentLoop . ... ... .. ... ... ... . . ... ... . ..... 5
1.41  FasterLinking . . . .. ... ... ... . 5

1.4.2 cargo-watch . . . . . .. e e e e e 6

15  ContinuousIntegration . . .. ... ... ... ... ... L 7
151 CISteps . . . ..o 8

1.5.2  Ready-to-goCIPipelines . . . .. ............ ... ........... 11

2 Building An Email Newsletter 13
2.1 OurDrivingExample. . . . ... ... 13
2.1.1  Problem-based Learning . . . ... ... ... ....... . ... . ... 13

2.2 What Should Our Newsletter Do? . . . . . . . . . . ... ittt 14
2.2.1 Capturing Requirements: User Stories . . . . ... ............... 14

2.3 WorkingInIterations. . . . . . . .. ... ... 15
2.3.1 ComingUp . .. ... . . 15

2.4 Checking Your Progress . . . . . ... .. .. ... e 16

3 Sign Up A New Subscriber 17
3.1 OurStrategy . . . . ... 17

iv



CONTENTS v

3.2 Choosing A Web Framework . . .. ... ... ... ... .. ... . . L. 18
3.3 Our First Endpoint: A Basic Health Check . . . . ... ... ................ 18
33.1 WiringUpactix-web. . . . .. ... ... .. . 18

3.3.2  Anatomy Of Anactix-web Application. . . . ... ....... ... ... .. 20

3.3.3  Implementing The Health Check Handler . . . ... .............. 25

3.4 OurFirstIntegration Test . . . . .. .. ... ... . L 28
341 HowDoYouTest An Endpoint? . . . . .. ... ... ............... 28

3.42  Where ShouldIPut My Tests? . . . . ... ... ................. 30

3.43  Changing Our Project Structure For Easier Testing . . . . . ... ... ... .. 31

3.5 Implementing Our First Integration Test . . . . . ... ... ... .............. 35
351 Polishing . ............ .. ... .. . . . . . . . . 39

3.6 Refocus . . . .. e 43
3.7  WorkingWith HTMLForms . . . .. .... ... ... ... ... .. ........ 44
3.7.1  Refining Our Requirements . . . ... ... ................... 44

3.7.2  Capturing Our Requirements As Tests . . . . ... ............... 44

3.7.3  Parsing Form Data From APOSTRequest . . . . ... .............. 47

3.8 Storing Data: Databases . . . .. ... ... ... ... L 56
3.81 ChoosingADatabase . . . .. ...... ... ... ... L. 56

3.82  Choosing ADatabase Crate . . .. ........................ 57

3.8.3  Integration Testing With Side-effects . . . . . . ... ... .. ... ... ... 58

3.84 DatabaseSetup . . ... . ... ... 59

3.8.5  WritingOur FirstQuery . . ... ... ... ... ... ... ... .... 66

3.9 DPersisting ANew Subscriber . . . .. ... o L oo 74
3.9.1  Application State Inactix-web . . . . ... ... L L 75

392 actix-webWorkers . . . . .. ... 77

3.93 ThebataExtractor . . . ... . .. . . .. ... 79

394  TheINSERTQuery . . ... ............................ 80

3.10 UpdatingOurTests . . . . . ...t i 84
3.10.1 Testlsolation . . ... . ... . . . . ... 88

301 Summary ... .. 91
4 Telemetry 93
4.1 UnknownUnknowns . . ... ... .. ... ... e 93
42 Observability . . .. ... ... ... 94
43 Logging . . .. .. . ... 95
431 ThelogCrate . . . . . . . . i i 96

43.2  actix-web’sLogger Middleware . . . . .. ... . ... ... ... ... ... 97

433 TheFacadePattern . . ... ... . ... . ... . ... . .. 97

4.4 Instrumenting POST /subscriptions . . . . .. ... ... ... .. . .. 0. 100
4.4.1  Interactions With External Systems . . . ... ..... ... ... ... ... 101

442 ThinkLike AUser . . ... ... . . .. . .. e 102

443  Logs MustBe Easy To Correlate . . . . ... ................... 104

45 StructuredLogging . . . . . . .. ... 106
45.1  ThetracingCrate . . . . . . . . . i i i e 107

45.2  Migrating Fromlog Totracing . . . .. ... .. ... . ........... 107



vi CONTENTS
45.3 Tracing’sSPan . . . . e e e e e e e 108

4.5.4  InstrumentingFutures . . .. ... ... ... ... .. .. .. L. 111

4.5.5  tracing’sSubscriber . . . . . . .. ... 113

4.5.6 tracing-subscriber . . . . . L L 114

4.5.7 tracing-bunyan-formatter . . . . . . . . . . . . it 114

4.5.8 Tracing-log . . . . i i e e e e e e e e e e e e e e e 117

459  Removing Unused Dependencies . . . ... ................... 118

4.5.10 Cleaning Up Initialisation . . . .. ... .. ...... ... ........... 118

4511 LogsForIntegration Tests . . . . ... ... ................... 122

4.5.12  Cleaning Up Instrumentation Code - tracing:: instrument . ... ... ... 126

4.5.13 Protect Your SeCrets - SECrecy . . v v v v v v v v i e e e e 130

4514 RequestId. ... ... ... . ... 133

4.5.15 Leveraging The tracing Ecosystem . . ... ................... 136

4.6 Summary . ... 136
5 Going Live 137
5.1  WeMust Talk About Deployments . . . . ... ....................... 137
5.2 ChoosingOurTools . . . ... ... .. ... .. ... ... 138
5.2.1  Virtualisation: Docker . . . . ... ... . . ... . ... ... 138

5.2.2  Hosting: DigitalOcean . . . ... ... ... ... ... .. ... .. ... 139

5.3 A Dockerfile For Our Application . . . . ... ... ... ... ... . ... ... 139
5.3.1  Dockerfiles . . . .. ... e 139

532 BuildContext . . . . . . . .. .. 140

533 SqlxOffineMode . . . . ... ... L 141

534 RunningAnlImage . . ... ........ ... ... ... ... ...... 143

5.3.5 Networking . . ... ... ... ... .. 145

5.3.6  Hierarchical Configuration . . . . . ... ...... ... ... ........ 146

5.3.7  Database Connectivity . . . ... ... . ... ... ... . . ... .. ... 152

5.3.8  Optimising Our DockerImage . . . . .. ..................... 152

5.4  Deploy To DigitalOcean Apps Platform . . . . ... ... ... .. .............. 158
ST SCTUP . . o ot e 158

5.4.2  AppSpecification . . . ... 158

5.4.3  How To Inject Secrets Using Environment Variables . . . . ... ........ 162

S.4.4  Connecting To Digital Ocean’s Postgres Instance . . . . . ... ... ...... 164

5.4.5  Environment Variables In The AppSpec . . . . ... .............. 167

54.6 OnelastPush. ... ... ... .. ... . ... . . .. . .. 168

6 Reject Invalid Subscribers #1 169
6.1 Requirements. . . . ... .. ... ... 170
6.1.1  Domain Constraints . . . . . . . . . . . i it e 170

6.1.2  Security Constraints . . . . ... ... ... ... ... 170

6.2  FirstImplementation . . . . . ... ... L 172
6.3 ValidationIs A Leaky Cauldron . . . ... ... ... ... .. ... ... ... . ... 174
6.4 Type-Driven Development . . . . .. ... ... ... . L 175
6.5 Ownership Meets Invariants . . . .. ... ... ... . L o 179



CONTENTS vii

6.5.1 ASReT . . e e e e e e e e e e e 182

6.6 Panics . . . . .. e e e e 185
6.7 ErrorAsValues-Result . . . . . . . . . .. . . . e 187
6.7.1 Converting parse ToReturnResult . . .. .. ... ... ... .. ..... 187

6.8  Insightful Assertion Errors: claims . . . ... ... ... ... ... . ... 190
6.9 UnitTests . . . . . . o e e 191
6.10 Handling AResult . . . ... ... . ... . 194
6.10.1 match . . . . e e e e e 194

6.102 The? Operator . . . . ... ... ... 195

6103 400BadRequest . . ... ... ... ... ... ... ... 196

6.11 TheEmail Format . .. . ... ... .. ... . .. 196
6.12 ThesSubscriberEmail Type . . . . . ... ... ... 197
6.12.1 Breaking The Domain Sub-Module . . . ... ............... ... 197

6.12.2  Skeleton Of ANew Type . . . . . .. ... i 199

6.13 Property-based Testing . . . . ... ... ... 201
6.13.1 How To Generate Random Test Data With fake . . . . ... ... ... .... 202

6.13.2 quickcheck Vsproptest . . . . . . . . o i i i i i e 203

6.13.3  Getting Started With quickcheck . . .. ... ... ... .. ...... . ... 203

6.13.4 Implementing The Arbitrary Trait . . . .. .. ... ... ... ...... ... 204

6.14 DPayload Validation . .. ... ... ... ... ... 206
6.14.1 Refactoring With TryFrom . . . .. ... ... ... ... . ... .. . ... 210

6.15 Summary . ... ... 213
7 Reject Invalid Subscribers #2 215
7.1 ConfirmationEmails . . . . . . ... ... ... 215
7.1.1  SubscriberConsent . . . . . . ... ... 215

7.1.2  The Confirmation User Journey . . . ... ... ... ... ........... 216

7.1.3  TheImplementation Strategy . . . . .. .. ... ... ... ... ... ... 217

7.2 EmailClient, Our Email Delivery Component . . . . .. ... ............... 217
721 HowToSend AnEmail . ... ... . ... ... . ... . ... . ...... 217

7.2.2  How To Write A REST Client Using reqwest . . . . . ... ... ....... 220

723 HowToTest ARESTClient. . . . ... ... ... . . ... ... . .. .... 228

7.2.4  First Sketch Of EmailClient::send_email . . . . . . . . . . . o oo ... 234

7.2.5  Tightening Our Happy Path Test . . . ... .. .............. ... 242

7.2.6  DealingWith Failures . . . ... ... ... ... ... . ... .. 251

7.3 Skeleton And Principles For A Maintainable TestSuite. . . . . ... ... ... ... ... 261
7.3.1  WhyDo We Write Tests? . . . . ... ... ... ... ... ........... 261

7.32  WhyDon’t We Write Tests? . . . . ... ... ... ... ........... 262

733 TestCodelsStillCode . . . ... ... .. .. ... . . . 262

734  OurTestSuite . . . . . . . . e 263

735  TestDiscovery . . . .. ... ... 264

7.3.6  OneTestFile,OneCrate . . . . . .. . . . i 264

7.3.7  Sharing TestHelpers . . . ... .. ... ... ... . ... .. ... 265

7.3.8  SharingStartupLogic . . . . ... ... L 269

7.3.9  Build An APIClient . . . . . . . . . . i e 278



viii CONTENTS

7310 Summary ... 282

74  Refocus . . . .. e 282
7.5  Zero Downtime Deployments . . . . ... ... ... ... .. L 283
7.5.1 Reliability . . .. ... . o 283

7.52  Deployment Strategies . . . .. ... ... ... ... .. ... 283

7.6 Database Migrations . . . . ... ... ... L 286
7.6.1  State Is Kept Outside The Application . . . . .. ... ... .......... 286

7.6.2  Deployments And Migrations . . . .. ... .. ... ... . ... .. ... 287

7.63  Multi-step Migrations . . . .. ... ... L 288

7.64  ANewMandatoryColumn . . ... ... .. ... . ... .. ... 288

765 ANewTable . ... ... . . . ... 290

7.7  Sending A Confirmation Email . . . .. ... ... ... .. .o oo L 291
771 AStaticEmail . . . ... 291

772  AStaticConfirmationLink . . . ... ... ... ... ... ........ 296

7.73  Pending Confirmation . .. ... .............. . .......... 300

774  Skeleton of GET /subscriptions/confirm . . . . ... ... ... ....... 304

7.7.5  ConnectingTheDots. . . . ... ....... . ... . ...... . ... 307

7.7.6  Subscription Tokens . . .. ... ... ... o oo oo L. 317

7.8 Database Transactions . . . . . . . . . . . . e 325
781 AllOrNothing . ... ... ... .. ... .. . ... 325

7.8.2  TransactionsInPostgres . . . ... ... ... ... ... ... ... ... 326

7.83  TransactionsInSqlx . ... ... .. ... .. oL 326

7.9 Summary ... 331
8 Error Handling 333
8.1 WhatIs The Purpose Of Errors? . . . . . ... .. ... ... .. ... ... ... ..... 333
81.1 InternalErrors. . . . . . . . . . . ... 334

812 ErrorsAtTheEdge . . ... ... ... .. ... . . ... L 336

8.1.3  Summary . .. ... 338

8.2 ErrorReporting For Operators . . . . .. ... ... ... ... ... .. ..... 339
8.2.1  Keeping Track Of The ErrorRootCause . . .. .. ............... 342

822 ThekrrorTrait . . . . . . . . . . . e 348

83 ErrorsForControlFlow . . . . . . . .. . . . .. 352
83.1 Layering . . ... ... .. 352

8.3.2  Modelling ErrorsasEnums . . . . ... ... oL oL 353

8.3.3  TheError TypeIsNotEnough . . . .. ............ .. ........ 355

8.3.4  Removing The Boilerplate With thiserror . . . ... ... ... ... ... .. 359

8.4 Avoid “Ball Of Mud” Error Enums . . . . . . . . . ... . ... 361
8.4.1  Usinganyhow As Opaque Error Type . . . ... .. ............... 366

8.4.2  anyhow Orthiserror? . . . . . . . . . i i i i e e e 369

8.5 WhoShouldLogErrors? . . . .. ... ... ... 369
8.6 Summary . . ... 371
9 Naive Newsletter Delivery 373

9.1 UserStories Are NotSetInStone . . . . . . . . . . . . . . e 373



CONTENTS ix

9.2 Do Not Spam Unconfirmed Subscribers . . . . .. ... ... ... .. ... ... 374
9.2.1  Set Up State Using The Public API . . .. ... ................. 376

922  ScopedMocks . . ... 376

923  GreenTest . . . . . . . e 377

9.3  All Confirmed Subscribers Receive New Issues . . . . . . . ... ... ... ........ 378
9.3.1  Composing TestHelpers . . ... ... ... ... .. ........ 378

9.4 ImplementationStrategy . . . . . . . ... ... 380
9.5 BodySchema . ... ... ... ... 381
951  TestlnvalidInputs . . ... ... ... ... ... 382

9.6 Fetch Confirmed Subscribers List . . . . . . . ... ... ... .. ... .. . . . ..... 384
9.7 Send Newsletter Emails . . . . ... ... . ... . ... . ... 387
9.7.1 context Vswith_context . . . . . . @ v i v v i e e 388

9.8 Validation Of StoredData . . . . . . ... . ... . ... 389
9.8.1  Responsibility Boundaries . . .. ... ... ... .0 o oL 393

9.82  Follow The Compiler . . . . ... ... ... .. ... ... ... ... 395

9.83  Remove SomeBoilerplate . . . ... ... ... oo oo 396

9.9  Limitations Of The Naive Approach . . . . ... ... ... ... . ........ 398
9.10 Summary . . . ... 399
10 Securing Our API 401
10.1 Authentication . . . . . . . . . . . e 401
10.1.1 Drawbacks. . . . . . . . . e 402

10.1.2  Multi-factor Authentication . . . . ... . ... ... .. . ... ... . ..., 402

10.2 Password-based Authentication . . . .. . ... ... .. ... . ... . ... ... 402
10.2.1 Basic Authentication . . .. ... ... . ... ... ... e 403

10.2.2  Password Verification - Naive Approach . . . ... ................ 409

10.2.3  PasswordStorage . . . . . ... ... 412

10.2.4 Do Not Block The Async Executor . . . .. ...... ... ........... 430

10.2.5 User Enumeration . . . . .. . . . . . . . .. e 438

103 Isitsafe? . . . . . . . . . e 442
10.3.1  Transport Layer Security (TLS) . . ... ........ ... ... ...... 442

10.3.2 PasswordReset . . . . . . . . . . . ... ... 443

10.3.3 Interaction Types . . . .. . ... ... ... ... .. 443

10.3.4 Machine ToMachine . . . ... ... ... ... . . . . .. ... .. ... ... 443

10.3.5 PersonViaBrowser . . .. .. . . . . .. ... ... 444

10.3.6  Machine to machine, on behalfof aperson . . . ... ........ . ... .. 445

10.4 Interlude: NextSteps . . . . . .. ... ... 445
10.5 LoginForms . . ... ... .. ... 445
10.5.1  Serving HTML Pages . . . . .. ... ... ... .. .. . ... .. ... ... 445

10.6 Login . . ... .. .. .. 448
10.6.1 HTMLForms . . . . . . . . . e e e 449

10.6.2 RedirectOnSuccess . . . . . . . it i e 452

10.6.3 ProcessingFormData . . . .. ... ... ... ... ... ... ... ... 453

10.6.4 Contextual Errors . . . . . . . .. ... 462

10.7 SeSSIONS . . . . vt e e e e e e e e 496



X CONTENTS

10.7.1  Session-based Authentication . . . ... ... ... .. ... .......... 496

10.7.2  Session Store . . . . v v v v i e e e e e e 497

10.7.3 Choosing A SessionStore . . . . . .. ... 497

10.7.4  actix-sessSion . . . . . . i i i i e e e e e e e e e e e 498

10.7.5 AdminDashboard . . ... ... ... ... 502

10.8 SeedUsers . . . . . . . o o o e 514
10.8.1 Database Migration . . . . . .. ... ... ... oo 515

10.8.2 PasswordReset . . . . . . . . .. . ... ... 516

109 Refactoring . . . . .. .. L 534
10.9.1 How To Write An actix-web Middleware . . . . . .. ... ... ........ 536

10.10 Summary . . . ... 542
11 Fault-tolerant Workflows 545
11.1 POST /admin/newsletters-ARefresher . . . . . . . ... ... .. ... ... .. .... 545
11.2 OurGoal . . . . . 547
11.3 FailureModes . . . . . . . . e 547
1131 InvalidInputs . .. ... ... ... 547

11.3.2 NetworkI/O . . . . . e 548

11.3.3 ApplicationCrashes. . . . .. ... ... ... ... . . . 549

11.3.4 AuthorActions . . . . . . . . . . . . e 549

11.4 Idempotency: AnIntroduction . . .. .................... .. ... ... 549
11.4.1 Idempotency In Action: Payments . . . . .. ... ................ 550

11.42 IdempotencyKeys . ... ... ...... ... ... . ... . .. ... ... 551

1143 ConcurrentRequests . . . . . ... ... .. o 552

11.5 Requirements As Tests#1 . . . . . . .. ... ... 552
11.6 Implementation Strategies . . . . . . . . . ... ... 554
11.6.1  Stateful Idempotency: Save AndReplay . . . . ... .. ....... .. .... 554

11.6.2  Stateless Idempotency: Deterministic Key Generation . . . .. ... ... ... 554

11.6.3 TimelIsaTrickyBeast. . . .. . ... ... ... ... ... . .. .. 554

11.6.4 Making AChoice . . . ... ... ... .. .. 555

11.7 Idempotency Store . . . . . . . . ... 555
11.7.1 Which Database Should We Use? . . . . . ... ... ... ... ......... 555

1172 Schema . . . ... . . . . e 556

11.8 Save AndReplay . . ... ... ... .. . ... 557
11.8.1 ReadIdempotencyKey . . . . ... .. ... ... ... ... ... 557

11.8.2 Retrieve Saved Responses . . . . . .. ... ... ... L L 562

11.83 SaveResponses . . ... ... ... ... ... .. ... 565

11.9 ConcurrentRequests . . . . . . . .. .. . 573
11.9.1 Requirements As Tests#2 . . . . . . ... .. ... 573

11.9.2  Synchronization . . . . ... .. ... ... ... ... 575

11.10 Dealing With Errors . . . . . . .. .00 o 582
11.10.1 Distributed Transactions . . . . . . . . . . o v v v it e 584

11.10.2 BackwardRecovery . . . . ... ... ... ... ... 585

11.10.3 ForwardRecovery . . . . . ... ... ... ... ... .. ... . 585

11.10.4 Asynchronous Processing . . . .. ... .. ... ... 586



CONTENTS

11.11 Epilogue

Xi



xii CONTENTS



Foreword

When you read these lines, Rust has achieved its biggest goal: make an offer to programmers to write their
production systems in a different language. By the end of the book, it is still your choice to follow that path,
but you have all you need to consider the offer. I've been part of the growth process of two widely different
languages: Ruby and Rust - by programming them, but also by running events, being part of their project
management and running business around them. Through that, I had the privilege of being in touch with
many of the creators of those languages and consider some of them friends. Rust has been my one chance
in life to see and help a language grow from the experimental stage to adoption in the industry.

I’llletyou in on a secret Ilearned along the way: programming languages are notadopted because of a feature
checklist. It’s a complex interplay between good technology, the ability to speak about it and finding enough
people willing to take long bets. When I write these lines, over 5000 people have contributed to the Rust
project, often for free, in their spare time - because they believe in that bet. But you don’t have to contribute
to the compiler or be recorded in a git log to contribute to Rust. Luca’s book is such a contribution: it gives
newcomers a perspective on Rust and promotes the good work of those many people.

Rust was never intended to be a research platform - it was always meant as a programming language solving
real, tangible issues in large codebases. It is no surprise that it comes out of an organization that maintains a
very large and complex codebase - Mozilla, creators of Firefox. When I joined Rust, it was just ambition - but
the ambition was to industrialize research to make the software of tomorrow better. With all of its theoretical
concepts, linear typing, region based memory management, the programming language was always meant
for everyone. This reflects in its lingo: Rust uses accessible names like “Ownership” and “Borrowing” for
the concepts I just mentioned. Rust is an industry language, through and through.

And that reflects in its proponents: I’ve known Luca for years as a community member who knows a ton
about Rust. But his deeper interest lies in convincing people that Rust is worth a try by addressing their
needs. The title and structure of this book reflects one of the core values of Rust: to find its worth in writing
production software that is solid and works. Rust shows its strength in the care and knowledge that went
into it to write stable software productively. Such an experience is best found with a guide and Luca is one
of the best guides you can find around Rust.

Rust doesn’t solve all of your problems, but it has made an effort to eliminate whole categories of mistakes.
There’s the view out there that safety features in languages are there because of the incompetence of pro-
grammers. I don’t subscribe to this view. Emily Dunham, captured it well in her RustConf 2017 keynote:
“safe code allows you to take better risks”. Much of the magic of the Rust community lies in this positive
view of its users: whether you are a newcomer or an experienced developer, we trust your experience and
your decision-making. In this book, Luca offers a lot of new knowledge that can be applied even outside of

xiii



xiv CONTENTS

Rust, well explained in the context of daily software praxis. I wish you a great time reading, learning and
contemplating.
Florian Gilcher,

Management Director of Ferrous Systems and
Co-Founder of the Rust Foundation



Preface

What Is This Book About

The world of backend development is vast.

The context you operate into has a huge impact on the optimal tools and practices to tackle the problem you
are working on.

For example, trunk-based development works extremely well to write software that is continuously deployed
in a Cloud environment.

The very same approach might fit poorly the business model and the challenges faced by a team that sells
software that is hosted and run on-premise by their customers - they are more likely to benefit from a Gitflow
approach.

If you are working alone, you can just push straight to main.

There are few absolutes in the field of software development and I feel it’s beneficial to clarify your point of
view when evaluating the pros and cons of any technique or approach.

Zero To Production will focus on the challenges of writing Cloud-native applications in a team of
four or five engineers with different levels of experience and proficiency.

Cloud-native applications

Defining what Clond-native application means is, by itself, a topic for a whole new book!. Instead of pre-
scribing what Cloud-native applications should look /ike, we can lay down what we expect them to do.
Paraphrasing Cornelia Davis, we expect Cloud-native applications:

* To achieve high-availability while running in fault-prone environments;
* To allow us to continuously release new versions with zero downtime;
* To handle dynamic workloads (e.g. request volumes).

These requirements have a deep impact on the viable solution space for the architecture of our software.

!Like the excellent Clond-native patterns by Cornelia Davis!

XV


https://z2p.io/fff
https://z2p.io/ff2
https://z2p.io/ffz
https://z2p.io/ff6

xvi CONTENTS

High availability implies that our application should be able to serve requests with no downtime even if
one or more of our machines suddenly starts failing (a common occurrence in a Cloud environment?). This
forces our application to be distributed - there should be multiple instances of it running on multiple ma-
chines.

The same is true if we want to be able to handle dynamic workloads - we should be able to measure if our
system is under load and throw more compute at the problem by spinning up new instances of the applica-
tion. This also requires our infrastructure to be elastic to avoid overprovisioning and its associated costs.
Running a replicated application influences our approach to data persistence - we will avoid using the local
filesystem as our primary storage solution, relying instead on databases for our persistence needs.

Zero 1o Production will thus extensively cover topics that might seem tangential to pure backend application
development. But Cloud-native software is all about rainbows and DevOps, therefore we will be spending
plenty of time on topics traditionally associated with the craft of operating systems.

We will cover how to instrument your Rust application to collect logs, traces and metrics to be able to
observe our system.

We will cover how to set up and evolve your database schema via migrations.

We will cover all the material required to use Rust to tackle both day one and day two concerns of a Cloud-
native API.

Working in a team

The impact of those three requirements goes beyond the technical characteristics of our system: it influences
how we build our software.

To be able to quickly release a new version of our application to our users we need to be sure that our ap-
plication works.

If you are working on a solo project you can rely on your thorough understanding of the whole system: you
wrote it, it might be small enough to fit entirely in your head at any point in time.?

If you are working in a team on a commercial project, you will be very often working on code that was neither

written or reviewed by you. The original authors might not be around anymore.

You will end up being paralysed by fear every time you are about to introduce changes if you are relying on
your comprehensive understanding of what the code does to prevent it from breaking.

You want automated tests.
Running on every commit. On every branch. Keeping main healthy.

You want to leverage the type system to make undesirable states difficult or impossible to represent.

2For example, many companies run their software on AWS Spot Instances to reduce their infrastructure bills. The price of Spot
instances is the result of a continuous auction and it can be substantially cheaper than the corresponding full price for On Demand
instances (up to 90% cheaper!).
There is one gotcha: AWS can decommission your Spot instances at any point in time. Your software must be fault-tolerant to
leverage this opportunity.

3Assuming you wrote it recently.
Your past self from one year ago counts as a stranger for all intents and purposes in the world of software development. Pray that
your past self wrote comments for your present self if you are about to pick up again an old project of yours.


https://z2p.io/ffv

CONTENTS xvii

You want to use every tool at your disposal to empower each member of the team to evolve that piece of
software. To contribute fully to the development process even if they might not be as experienced as you or
equally familiar with the codebase or the technologies you are using.

Zero To Production will therefore put a strong emphasis on test-driven development and continuous integ-
ration from the get-go - we will have a CI pipeline set up before we even have a web server up and running!

We will be covering techniques such as black-box testing for APIs and HTTP mocking - not wildly popular
or well documented in the Rust community yet extremely powerful.

We will also borrow terminology and techniques from the Domain Driven Design world, combining them
with type-driven design to ensure the correctness of our systems.

Our main focus is enterprise software: correct code which is expressive enough to model the domain
and supple enough to support its evolution over time.

We will thus have a bias for boring and correct solutions, even if they incur a performance overhead that
could be optimised away with a more careful and chiseled approach.
Get it to run first, optimise it later (if needed).

Who Is This Book For

The Rust ecosystem has had a remarkable focus on smashing adoption barriers with amazing material geared
towards beginners and newcomers, a relentless effort that goes from documentation to the continuous pol-
ishing of the compiler diagnostics.

There is value in serving the largest possible audience.

At the same time, trying to always speak to everybody can have harmful side-effects: material that would be
relevant to intermediate and advanced users but definitely too much too soon for beginners ends up being
neglected.

I struggled with it first-hand when I started to play around with async/await.

There was a significant gap between the knowledge I needed to be productive and the knowledge I had built
reading The Rust Book or working in the Rust numerical ecosystem.

I wanted to get an answer to a straight-forward question:

[ Can Rust be a productive language for API development? ]

Yes.

But it can take some time to figure out how.
That’s why I am writing this book.

I am writing this book for the seasoned backend developers who have read The Rust Book and are now
trying to port over a couple of simple systems.

I am writing this book for the new engineers on my team, a trail to help them make sense of the codebases
they will contribute to over the coming weeks and months.


https://z2p.io/ff4
https://z2p.io/ffx

xviii CONTENTS

Iam writing this book for a niche whose needs I believe are currently underserved by the articles and resources
available in the Rust ecosystem.

I'am writing this book for myself a year ago.
To socialise the knowledge gained during the journey: what does your toolbox look like if you are using Rust
for backend development in 20222 What are the design patterns? Where are the pitfalls?

If you do not fit this description but you are working towards it I will do my best to help you on the journey:
while we won’t be covering a lot of material directly (e.g. most Rust language features) I will try to provide
references and links where needed to help you pick up/brush off those concepts along the way.

Let’s get started.



Chapter 1

Getting Started

There is more to a programming language than the language itself: tooling is a key element of the experience
of using the language.

The same applies to many other technologies (e.g. RPC frameworks like gRPC or Apache Avro) and it often
has a disproportionate impact on the uptake (or the demise) of the technology itself.

Tooling should therefore be treated as a first-class concern both when designing and teaching the language
itself.

The Rust community has put tooling at the forefront since its early days: it shows.

We are now going to take a brief tour of a set of tools and udilities that are going to be useful in our jour-
ney. Some of them are officially supported by the Rust organisation, others are built and maintained by the
community.

1.1 Installing The Rust Toolchain

There are various ways to install Rust on your system, but we are going to focus on the recommended path:
via rustup.

Instructions on how to install rustup itself can be found at https://rustup.rs.

rustup is more than a Rust installer - its main value proposition is foolchain management.

A toolchain is the combination of a compilation target and a release channel.

1.1.1 Compilation Targets

The main purpose of the Rust compiler is to convert Rust code into machine code - a set of instructions
that your CPU and operating system can understand and execute.

Therefore you need a different backend of the Rust compiler for each compilation target, i.e. for each plat-
form (e.g. 64-bit Linux or 64-bit OSX) you want to produce a running executable for.

The Rust project strives to support a broad range of compilation targets with various level of guarantees.
Targets are split into tzers, from “guaranteed-to-work” Tier 1 to “best-effort” Tier 3.

An exhaustive and up-to-date list can be found on the Rust forge website.

1


https://z2p.io/ff8
https://z2p.io/ffb

2 CHAPTER 1. GETTING STARTED

1.1.2 Release Channels

The Rust compiler itself is a living piece of software: it continuously evolves and improves with the daily
contributions of hundreds of volunteers.

The Rust project strives for stability without stagnation. Quoting from Rust’s documentation:

[..] you should never have to fear upgrading to a new version of stable Rust. Each upgrade should
be painless, but should also bring you new features, fewer bugs, and faster compile times.

That is why, for application development, you should generally rely on the latest released version of the
compiler to run, build and test your software - the so-called stable channel.

A new version of the compiler is released on the stable channel every six weeks' - the latest version at the
time of writing is v1.80.1%

There are two other release channels:

* beta, the candidate for the next release;
* nightly, built from the master branch of rust-lang/rust every night, thus the name.

Testing your software using the beta compiler is one of the many ways to support the Rust project - it helps
catching bugs before the release date’.

nightly serves a different purpose: it gives early adopters access to unfinished features* before they are re-
leased (or even on track to be stabilised!).
I would invite you to think twice if you are planning to run production software on top of the nightly
compiler: it’s called unstable for a reason.

1.1.3 What Toolchains Do We Need?

Installing rustup will give you out of the box the latest stable compiler with your host platform as a target.
stable is the release channel that we will be using throughout the book to build, test and run our code.

You can update your toolchains with rustup update, while rustup toolchain list will give you an over-
view of what is installed on your system.

We will not need (or perform) any cross-compiling - our production workloads will be running in contain-
ers, hence we do not need to cross-compile from our development machine to the target host used in our
production environment.

"More details on the release schedule can be found in the Rust book.

2You can check the next version and its release date at Rust forge.

31t’s fairly rare for beta releases to contain issues thanks to the CI/CD setup of the Rust project. One of its most interesting
components is crater, a tool designed to scrape crates.io and GitHub for Rust projects to build them and run their test suites to
identify potential regressions. Pietro Albini gave an awesome overview of the Rust release process in his Shipping a compiler every
six weeks talk at RustFest 2019.

“You can check the list of feature flags available on nightly in The Unstable Book. Spozler: there are loads.


https://z2p.io/ffn
https://z2p.io/ffm
https://z2p.io/ff3
https://z2p.io/ffq
https://z2p.io/ff5
https://z2p.io/ffw
https://z2p.io/ff7
https://z2p.io/ffe
https://z2p.io/ffe
https://z2p.io/ff9

1.2. PROJECT SETUP 3

1.2 Project Setup

A toolchain installation via rustup bundles together various components.
One of them is the Rust compiler itself, rustc. You can check it out with

rustc --version

You will not be spending a lot of quality time working directly with rustc - your main interface for building
and testing Rust applications will be cargo, Rust’s build tool.
You can double-check everything is up and running with

cargo --version

Let’s use cargo to create the skeleton of the project we will be working on for the whole book:

cargo new zero2prod

You should have a new zero2prod folder, with the following file structure:

zero2prod/
Cargo.toml
.gitignore
.git
src/
main.rs

The project is already a git repository, out of the box.
If you are planning on hosting the project on GitHub, you just need to create a new empty repository and
run

cd zero2prod

git add .

git commit -am "Project skeleton"

git remote add origin git@github.com:YourGitHubNickName/zero2prod.git
git push -u origin main

We will be using GitHub as a reference given its popularity and the recently released GitHub Actions feature
for CI pipelines, but you are of course free to choose any other git hosting solution (or none at all).



4 CHAPTER 1. GETTING STARTED

1.3 IDEs

The project skeleton is ready, it is now time to fire up your favourite editor so that we can start messing
around with it.

Different people have different preferences but I would argue that the bare minimum you want to have, espe-
cially if you are starting out with a new programming language, is a setup that supports syntax highlighting,
code navigation and code completion.

Syntax highlighting gives you immediate feedback on glaring syntax errors, while code navigation and code
completion enable “exploratory” programming: jumping in and out of the source of your dependencies,
quick access to the available methods on a struct or an enum you imported from a crate without having to
continuously switch between your editor and docs.rs.

You have two main options for your IDE setup: rust-analyzer and RustRover.

1.3.1 Rust-analyzer

rust-analyzer’ is an implementation of the Language Server Protocol for Rust.

The Language Server Protocol makes it easy to leverage rust-analyzer in many different editors, including
but not limited to VS Code, Emacs, Vim/NeoVim, Zed and Sublime Text 3.

Editor-specific setup instructions can be found on rust-analyzer’s website.

1.3.2 RustRover

RustRover provides Rust support to the suite of editors developed by JetBrains®.
It is free for non-commercial usage.

1.3.3 What Should I Use?

As of September 2024, I recommend using RustRover.
rust-analyzer is promising, but it still falls short from offering an IDE experience on par with what Rus-
tRover offers today’.

On the other hand, RustRover forces you to work with a JetBrains” IDE, which you might or might not be
willing to. If you'd like to stick to your editor of choice look for its rust-analyzer integration/plugin.

It is worth mentioning that rust-analyzer is part of a larger library-ification effort taking place within the
Rust compiler: there is overlap between rust-analyzer and rustc, with a lot of duplicated effort.
Evolving the compiler’s codebase into a set of re-usable modules will allow rust-analyzer to leverage an

Srust-analyzer is not the first attempt to implement the LSP for Rust: RLS was its predecessor. RLS took a batch-processing
approach: every little change to any of the files in a project would trigger re-compilation of the whole project. This strategy was
fundamentally limited and it led to poor performance and responsiveness. RFC2912 formalised the “retirement” of RLS as the
blessed LSP implementation for Rust in favour of rust-analyzer.

¢RustRover superseded the Intelli] Rust plugin, which was the first (free) Rust plugin for JetBrains’ IDEs.

7Neither myself nor the book are sponsored by JetBrains (or any other company). All recommendations, this included, are based
on my personal experience.


https://z2p.io/ffr
https://z2p.io/fft
https://z2p.io/ffy
https://z2p.io/ffu
https://z2p.io/ffp
https://z2p.io/ffl
https://z2p.io/ffk
https://z2p.io/ffs

1.4. INNER DEVELOPMENT LOOP 5

increasingly larger subset of the compiler codebase, unlocking the on-demand analysis capabilities required
to offer a top-notch IDE experience.
An interesting space to keep an eye on in the future®.

1.4 Inner Development Loop

While working on our project, we will be going through the same steps over and over again:

* Make a change;

* Compile the application;
* Run tests;

* Run the application.

This is also known as the inner development loop.

The speed of your inner development loop is as an upper bound on the number of iterations that you can
complete in a unit of time.

If it takes 5 minutes to compile and run the application, you can complete at most 12 iterations in an hour.
Cut it down to 2 minutes and you can now fit in 30 iterations in the same hour!

Rust does not help us here - compilation speed can become a pain point on big projects. Let’s see what we
can do to mitigate the issue before moving forward.

1.4.1 Faster Linking

When looking at the inner development loop, we are primarily looking at the performance of incremental
compilation - how long it takes cargo to rebuild our binary after having made a small change to the source
code.

A sizeable chunk of time is spent in the linking phase - assembling the actual binary given the outputs of
the earlier compilation stages.

The default linker does a good job, but there is a faster alternative: 11d, a linker developed by the LLVM
project.
To speed up the linking phase you have to install the alternative linker on your machine and add this config-

uration file to the project:
# .cargo/config.toml
On Windows

#

#

# cargo install -f cargo-binutils

# rustup component add llvm-tools-preview
PN

8Check their Next Few Years blog post for more details on rust-analyzer’s roadmap and main concerns going forward.


https://z2p.io/ffj
https://z2p.io/ffg

6 CHAPTER 1. GETTING STARTED

[target.x86_64-pc-windows-msvc]
rustflags = ["-C", "link-arg=-fuse-1d=11d"]

[target.x86_64-pc-windows-gnu]
rustflags = ["-C", "link-arg=-fuse-1d=11d"]

# On Linux:

# - Ubuntu, “sudo apt-get install 1ld clang’
# - Arch, “sudo pacman -S 1l1d clang"
[target.x86_64-unknown-linux-gnu]

rustflags = ["-C", "linker=clang", "-C", "link-arg=-fuse-1d=11d"]

# On MacOS, “brew install l1lvm and follow steps in “brew info llvm~
[target.x86_64-apple-darwin]

rustflags = ["-C", "link-arg=-fuse-1d=11d"]

[target.aarch64-apple-darwin]
rustflags = ["-C", "link-arg=-fuse-1d=/opt/homebrew/opt/1lvm/bin/1d64.11d"]

There is ongoing work on the Rust compiler to use 11d as the default linker where possible - soon enough
this custom configuration will not be necessary to achieve higher compilation performance!’

1.4.2 cargo-watch

We can also mitigate the impact on our productivity by reducing the perceived compilation time - i.e. the
time you spend looking at your terminal waiting for cargo check or cargo run to complete.
Tooling can help here - let’s install cargo-watch:

cargo install cargo-watch

cargo-watch monitors your source code to trigger commands every time a file changes.
For example:

cargo watch -x check

will run cargo check after every code change.

This reduces the perceived compilation time:

* you are still in your IDE, re-reading the code change you just made;

?You can also try the mold linker on Linux, and its cousin sold on MacOS. They offer very competitive performance, although
they are both younger projects and might not be as stable as the alternatives we already mentioned.


https://z2p.io/fwc
https://z2p.io/ffc
https://z2p.io/ffa
https://z2p.io/f2f

1.5. CONTINUOUS INTEGRATION 7

* cargo-watch, in the meantime, has already kick-started the compilation process;
* once you switch to your terminal, the compiler is already halfway through!

cargo-watch supports command chaining as well:

cargo watch -x check -x test -x run

It will start by running cargo check.
If it succeeds, it launches cargo test.
If tests pass, it launches the application with cargo run.

Our inner development loop, right there!

1.5 Continuous Integration

Toolchain, installed.
Project skeleton, done.

IDE, ready.
One last thing to look at before we get into the details of what we will be building: our Continuous Integ-
ration (CI) pipeline.

In trunk-based development we should be able to deploy our main branch at any point in time.
Every member of the team can branch off from main, develop a small feature or fix a bug, merge back into
main and release to our users.

Continuous Integration empowers each member of the team to integrate their changes into the main
branch multiple times a day.

This has powerful ripple effects.

Some are tangible and easy to spot: it reduces the chances of having to sort out messy merge conflicts due to
long-lived branches. Nobody likes merge conflicts.

Some are subtler: Continuous Integration tightens the feedback loop. You are less likely to go oft on
your own and develop for days or weeks just to find out that the approach you have chosen is not endorsed
by the rest of the team or it would not integrate well with the rest of the project.

It forces you to engage with your teammates earlier than when it feels comfortable, course-correcting if ne-
cessary when it is still easy to do so (and nobody is likely to get offended).

How do we make it possible?

With a collection of automated checks running on every commit - our CI pipeline.
If one of the checks fails you cannot merge to main - as simple as that.

CI pipelines often go beyond ensuring code health: they are a good place to perform a series of additional
important checks - e.g. scanning our dependency tree for known vulnerabilities, linting, formatting, etc.



8 CHAPTER 1. GETTING STARTED

We will run through the different checks that you might want to run as part of the CI pipeline of your Rust
projects, introducing the associated tools as we go along.
We will then provide a set of ready-made CI pipelines for some of the major CI providers.

1.5.1 CI Steps
1.5.1.1 Tests

If your CI pipeline had a single step, it should be testing.
Tests are a first-class concept in the Rust ecosystem and you can leverage cargo to run your unit and integ-
ration tests:

cargo test

cargo test also takes care of building the project before running tests, hence you do not need to run cargo
build beforehand (even though most pipelines will invoke cargo build before running tests to cache de-
pendencies).

1.5.1.2 Code Coverage

Many articles have been written on the pros and cons of measuring code coverage.

While using code coverage as a quality check has several drawbacks I do argue that it is a quick way to collect
information and spot if some portions of the codebase have been overlooked over time and are indeed poorly
tested.

The easiest way to measure code coverage of a Rust project is via cargo-1lvm-cov, a cargo subcommand
developed by Taiki Endo. You can install cargo-11vm-cov with

# Additional components required to compute LLVM code coverage
rustup component add llvm-tools-preview
cargo install cargo-llvm-cov

while

cargo llvm-cov

will compute code coverage for your application code.

cargo-1lvm-cov can be used to upload code coverage metrics to popular services like Codecov or Coveralls
- instructions can be found via cargo 1lvm-cov --help.


https://z2p.io/f22
https://z2p.io/f2z
https://z2p.io/f2z
https://z2p.io/f72
https://z2p.io/f7z
https://z2p.io/f26
https://z2p.io/f2v

1.5. CONTINUOUS INTEGRATION 9

1.5.1.3 Linting

Writing idiomatic code in any programming language requires time and practice.
It is easy at the beginning of your learning journey to end up with fairly convoluted solutions to problems
that could otherwise be tackled with a much simpler approach.

Static analysis can help: in the same way a compiler steps through your code to ensure it conforms to the
language rules and constraints, a linter will try to spot unidiomatic code, overly-complex constructs and
common mistakes/inefficiencies.

The Rust team maintains clippy, the official Rust linter!©.

clippy is included in the set of components installed by rustup if you are using the default profile. Often
CI environments use rustup’s minimal profile, which does not include clippy.

You can easily install it with

rustup component add clippy

If it is already installed the command is a no-op.

You can run clippy on your project with

cargo clippy

In our CI pipeline we would like to fail the linter check if c1ippy emits any warnings.
We can achieve it with

cargo clippy -- -D warnings

Static analysis is not infallible: from time to time clippy might suggest changes that you do not believe to
be either correct or desirable.

You can mute a warning using the #{allow(clippy :: lint_name)] attribute on the affected code block or
disable the noisy lint altogether for the whole project with a configuration line in clippy. toml or a project-
level #! [allow(clippy :: lint_name)] directive.

Details on the available lints and how to tune them for your specific purposes can be found in clippy’s
README.

1.5.1.4 Formatting
Most organizations have more than one line of defence for the main branch: one is provided by the CI
pipeline checks, the other is often a pull request review.

Alot can be said on what distinguishes a value-adding PR review process from a soul-sucking one - no need
to re-open the whole debate here.

10¥es, clippy is named after the (in)famous paperclip-shaped Microsoft Word assistant.


https://z2p.io/f2b
https://z2p.io/f2n

10 CHAPTER 1. GETTING STARTED

I'know for sure what should not be the focus of a good PR review: formatting nitpicks - e.g. Can you add
a newline bere?, I think we have a trailing whitespace there!, etc.

Let machines deal with formatting while reviewers focus on architecture, testing thoroughness, reliability,
observability. Automated formatting removes a distraction from the complex equation of the PR review
process. You might dislike this or that formatting choice, but the complete erasure of formatting bikeshed-
ding is worth the minor discomfort.

rustfmt is the official Rust formatter.
Just like clippy, rustfmt is included in the set of default components installed by rustup. If missing, you
can easily install it with

‘ rustup component add rustfmt

You can format your whole project with

cargo fmt

In our CI pipeline we will add a formatting step

‘ cargo fmt -- --check

It will fail when a commit contains unformatted code, printing the difference to the console. 1

You can tune rustfmt for a project with a configuration file, rustfmt. toml. Details can be found in rust-
fmt’s README.

1.5.1.5 Security Vulnerabilities

cargo makes it very easy to leverage existing crates in the ecosystem to solve the problem at hand.
On the flip side, each of those crates might hide an exploitable vulnerability that could compromise the
security posture of your software.

The Rust Secure Code working group maintains an Advisory Database - an up-to-date collection of reported
vulnerabilities for crates published on crates.io.

They also provide cargo-audit!?, a convenient cargo sub-command to check if vulnerabilities have been
reported for any of the crates in the dependency tree of your project.
You can install it with

1t can be annoying to get a fail in CI for a formatting issue. Most IDEs support a “format on save” feature to make the process
smoother. Alternatively, you can use a git pre-push hook.

12cargo-deny, developed by Embark Studios, is another cargo sub-command that supports vulnerability scanning of your de-
pendency tree. It also bundles additional checks you might want to perform on your dependencies - it helps you identify unmain-
tained crates, define rules to restrict the set of allowed software licenses and spot when you have multiple versions of the same crate
in your lock file (wasted compilation cycles!). It requires a bit of upfront effort in configuration, but it can be a powerful addition
to your CI toolbox.


https://z2p.io/f2m
https://z2p.io/f23
https://z2p.io/f2q
https://z2p.io/f25
https://z2p.io/ffw
https://z2p.io/f2t
https://z2p.io/f29
https://z2p.io/f2r

1.5. CONTINUOUS INTEGRATION 11

cargo install cargo-audit

Once installed, run

cargo audit

to scan your dependency tree.

We will be running cargo-audit as part of our CI pipeline, on every commit.
We will also run it on a daily schedule to stay on top of new vulnerabilities for dependencies of projects that
we might not be actively working on at the moment but are still running in our production environment!

1.5.2 Ready-to-go CI Pipelines

[ Give a man a fish, and you feed him for a day. Teach a man to fish, and you feed him for a lifetime. ]

Hopefully I have taught you enough to go out there and stitch together a solid CI pipeline for your Rust
projects.

We should also be honest and admit that it can take multiple hours of fidgeting around to learn how to use
the specific flavour of configuration language used by a CI provider and the debugging experience can often
be quite painful, with long feedback cycles.

To speed up the process, you can use these ready-made configuration files for running the steps we just
described via GitHub Actions. It is often much easier to tweak an existing setup to suit your specific needs
than to write a new one from scratch.


https://z2p.io/f74

12

CHAPTER 1. GETTING STARTED



Chapter 2

Building An Email Newsletter

2.1 Our Driving Example

The Foreword stated that

Zero 1o Production will focus on the challenges of writing cloud-native applications in a team of four
or five engineers with different levels of experience and proficiency.

How? Well, by actually building one!

2.1.1 Problem-based Learning

Choose a problem you want to solve.
Let the problem drive the introduction of new concepts and techniques.

It flips the hierarchy you are used to: the material you are studying is not relevant because somebody claims
itis, it is relevant because it is useful to get closer to a solution.
You learn new techniques and when it makes sense to reach for them.

The devil is in the details: a problem-based learning path can be delightful, yet it is painfully easy to misjudge
how challenging each step of the journey is going to be.
Our driving example needs to be:

* small enough for us to tackle in a book without cutting corners;
* complex enough to surface most of the key themes that come up in bigger systems;
* interesting enough to keep readers engaged as they progress.

We will go for an email newsletter - the next section will detail the functionality we plan to cover!.

'Who knows, I might end up using our home-grown newsletter application to release the final chapter - it would definitely
provide me with a sense of closure.

13



14 CHAPTER 2. BUILDING AN EMAIL NEWSLETTER

2.2  What Should Our Newsletter Do?

There are dozens of companies providing services that include or are centered around the idea of managing
a list of email addresses.

While they all share a set of core functionalities (i.e. sending emails), their services are tailored to specific use-
cases: UI, marketing spin and pricing will differ significantly between a product targeted at big companies
managing hundreds of thousands of addresses with strict security and compliance requirements compared
to a Saa$ offering geared to indie content creators running their own blogs or small online stores.

Now, we have no ambition to build the next MailChimp or ConvertKit - the scope would definitely be too
broad for us to cover over the course of a book. Furthermore, several features would require applying the
same concepts and techniques over and over again - it gets tedious to read after a while.

We will try to build an email newsletter service that supports what you need to get oft the ground if you are
willing to add an email subscription page to your blog®.

2.2.1 Capturing Requirements: User Stories

The product brief above leaves some room for interpretation - to better scope what our service should sup-
port we will leverage user stories.
The format is fairly simple:

Asa...,

Iwantto...,
So that ...

A user story helps us to capture who we are building for (as «), the actions they want to perform (want to)
as well as their motives (so that).

We will fulfill two user stories:

* Asablog visitor,

I want to subscribe to the newsletter,

So that I can receive email updates when new content is published on the blog;
* As the blog author,

I want to send an email to all my subscribers,

So that I can notify them when new content is published.

We will not add features to

* unsubscribe;

2Make no mistake: when buying a Saa$S product it is often not the software itself that you are paying for - you are paying for
the peace of mind of knowing that there is an engineering team working full time to keep the service up and running, for their legal
and compliance expertise, for their security team. We (developers) often underestimate how much time (and headaches) that saves
us over time.



2.3. WORKING INITERATIONS 15

* manage multiple newsletters;
* segment subscribers in multiple audiences;
* track opening and click rates.

As said, pretty barebone. We would definitely not be able to launch publicly without giving users the pos-
sibility to unsubscribe.
Nonetheless, fulfilling those two stories will give us plenty of opportunities to practice and hone our skills!

2.3 Working In Iterations

Let’s zoom on one of those user stories:

As the blog author,
I want to send an email to all my subscribers,
So that I can notify them when new content is published.

What does this mean 2% practice? What do we need to build?

As soon as you start looking closer at the problem tons of questions pop up - e.g. how do we ensure that the
caller is indeed the blog author? Do we need to introduce an authentication mechanism? Do we support
HTML in emails or do we stick to plain text? What about emojis?

We could easily spend months implementing an extremely polished email delivery system without having
even a basic subscribe/unsubscribe functionality in place.

We might become the best at sending emails, but nobody is going to use our email newsletter service - it does
not cover the full journey.

Instead of going deep on one story, we will try to build enough functionality to satisfy, z0 an extent, the
requirements of all of our stories in our first release.

We will then go back and improve: add fault-tolerance and retries for email delivery, add a confirmation
email for new subscribers, etc.

We will work in iterations: each iteration takes a fixed amount of time and gives us a slightly better version
of the product, improving the experience of our users.

Worth stressing that we are iterating on product features, not engineering quality: the code produced in each
iteration will be tested and properly documented even if it only delivers a tiny, fully functional feature.
Our code is going to production at the end of each iteration - it needs to be production-quality.

2.3.1 Coming Up

Strategy is clear, we can finally get started: the next chapter will focus on the subscription functionality.
Getting off the ground will require some initial heavy-lifting: choosing a web framework, setting up the
infrastructure for managing database migrations, putting together our application scaffolding as well as our
setup for integration testing.

Expect to spend way more time pair programming with the compiler going forward!



16 CHAPTER 2. BUILDING AN EMAIL NEWSLETTER

2.4 Checking Your Progress

One last (but crucial!) detail: there is a public GitHub repository for this book.

The GitHub repository hosts all the code for our newsletter API project. It also includes intermediate snap-
shots, showing what the project looks like at end of each chapter and key sections.

If you get stuck, make sure to compare your code with the one in the repository!


https://z2p.io/f2y

Chapter 3

Sign Up A New Subscriber

We spent the whole previous chapter defining what we will be building (an email newsletter!), narrowing
down a precise set of requirements. It is now time to roll up our sleeves and get started with it.

This chapter will take a first stab at implementing this user story:

As ablog visitor,
I want to subscribe to the newsletter,
So that I can receive email updates when new content is published on the blog.

We expect our blog visitors to input their email address in a form embedded on a web page.

The form will trigger an API call to a backend server that will actually process the information, store it and
send back a response.

This chapter will focus on that backend server - we will implement the /subscriptions POST endpoint.

3.1 Our Strategy

We are starting a new project from scratch - there is a fair amount of upfront heavy-lifting we need to take
care of:

* choose a web framework and get familiar with it;

* define our testing strategy;

* choose a crate to interact with our database (we will have to save those emails somewhere!);

* define how we want to manage changes to our database schemas over time (a.k.a. migrations);
* actually write some queries.

That is a lot and jumping in head-first might be overwhelming.

We will add a stepping stone to make the journey more approachable: before tackling /subscriptions we
will implement a /health_check endpoint. No business logic, but a good opportunity to become friends
with our web framework and get an understanding of all its different moving parts.

17



18 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

We will be relying on our Continuous Integration pipeline to keep us in check throughout the process - if
you have not set it up yet, go back to Chapter 1 and grab one of the ready-made templates.

3.2 Choosing A Web Framework

What web framework should we use to write our Rust API?

You can find many competing options in the ecosystem (actix-web, axum, poem, tide, rocket, etc.). For
this book, we will use actix-web.

actix-web is one of Rust’s oldest frameworks. It has seen extensive production usage, and it has built a large
community and plugin ecosystem; last but not least, it runs on tokio, therefore minimising the likelihood
of having to deal with incompatibilities and interop between different async runtimes.

actix-web will therefore be our choice for Zero To Production.

Throughout this chapter and beyond I suggest you to keep a couple of extra browser tabs open: actix-web’s
website, actix-web’s documentation and actix-web’s examples collection.

3.3 Our First Endpoint: A Basic Health Check

Let’s try to get off the ground by implementing a health-check endpoint: when we receive a GET request for
/health_check we want to return a 200 OK response with no body.

We can use /health_check to verify that the application is up and ready to accept incoming requests.
Combine it with a SaaS$ service like pingdom.com and you can be alerted when your API goes dark - quite a
good baseline for an email newsletter that you are running on the side.

A health-check endpoint can also be handy if you are using a container orchestrator to juggle your applica-
tion (e.g. Kubernetes or Nomad): the orchestrator can call /health_check to detect if the API has become
unresponsive and trigger a restart.

3.3.1 Wiring Up actix-web

Our starting point will be an Hello World! application built with actix-web:
use actix_web:: {web, App, HttpRequest, HttpServer, Responder};
async fn greet(req: HttpRequest) — impl Responder {

let name = req.match_info().get("name").unwrap_or("World");
format!("Hello {}!", &name)

#H tokio::main]
async fn main() — Result<(), std::io::Error> {

HttpServer ::new( || {


https://z2p.io/f2u
https://z2p.io/f2u
https://z2p.io/f2p
https://z2p.io/f2l
https://z2p.io/f2k
https://z2p.io/f2s
https://z2p.io/f2h
https://z2p.io/f2g

3.3. OUR FIRST ENDPOINT: A BASIC HEALTH CHECK 19

App ::new()
.route("/", web::get().to(greet))
.route("/{name}", web::get().to(greet))
P
.bind("127.0.0.1:8000")?
.run()
.await

Let’s paste it in our main. rs file.
A quick cargo check!:

error[EQ432]: unresolved import “actix_web’
-— src/main.rs:1:5

1 | use actix_web::{web, App, HttpRequest, HttpServer, Responder};

| ANAANAAAN

use of undeclared type or module “actix_web’

error[EQ433]: failed to resolve:
use of undeclared type or module ~tokio~
-— src/main.rs:8:3
|

8 | #{tokio::main]

| AANNAAAN

use of undeclared type or module “tokio~

error: aborting due to 2 previous errors

We have not added actix-web and tokio to our list of dependencies, therefore the compiler cannot resolve
what we imported.
We can either fix the situation manually, by adding

#! Cargo.toml
#[..]

[dependencies]
actix-web = "4"

tokio = { version = "1", features = ["macros", "rt-multi-thread"] }

under [dependencies] in our Cargo.toml or we can use cargo add to quickly add the latest version of both
crates as a dependency of our project:

1During our development process we are not always interested in producing a runnable binary: we often just want to know if
our code compiles or not. cargo check was born to serve exactly this usecase: it runs the same checks that are run by cargo build,
but it does not bother to perform any machine code generation. It is therefore much faster and provides us with a tighter feedback
loop. See link for more details.


https://z2p.io/fz3

20 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

cargo add actix-web@4
cargo add tokio@l --features macros,rt-multi-thread

If you run cargo check again there should be no errors.
You can now launch the application with cargo run and perform a quick manual test:

| curl http://127.0.0.1:8000
‘ Hello World!

Cool, it’s alive!
You can gracefully shut down the web server with Ctr1+C if you want to.

3.3.2 Anatomy Of An actix-web Application

Let’s go back now to have a closer look at what we have just copy-pasted in our main.rs file.

//' src/main.rs

M [ oool

#H tokio::main]
async fn main() — Result<(), std::io::Error> {
HttpServer ::new( || {
App :: new()
.route("/", web::get().to(greet))
.route("/{name}", web::get().to(greet))
b
.bind("127.0.0.1:8000")?
.run()
.await

3.3.2.1 Server - HttpServer

HttpServer is the backbone supporting our application. It takes care of things like:

* where should the application be listening for incoming requests? A TCP socket (e.g.
127.0.0.1:8000)? A Unix domain socket?

* what is the maximum number of concurrent connections that we should allow? How many new
connections per unit of time?

* should we enable transport layer security (TLS)?


https://z2p.io/f2j

3.3. OUR FIRST ENDPOINT: A BASIC HEALTH CHECK 21

® etc.

HttpServer, in other words, handles all zzansport level concerns.

What happens afterwards? What does Ht tpServer do when it has established a new connection with a client
of our API and we need to start handling their requests?

That is where App comes into play!

3.3.2.2 Application - App

App is where all your application logic lives: routing, middlewares, request handlers, etc.
App is the component whose job is to take an incoming request as input and spit out a response.
Let’s zoom in on our code snippet:

App :: new()
.route("/", web::get().to(greet))
.route("/{name}", web::get().to(greet))

App is a practical example of the builder pattern: new() gives us a clean slate to which we can add, one bit at
a time, new behaviour using a fluent API (i.e. chaining method calls one after the other).

We will cover the majority of App’s API surface on a need-to-know basis over the course of the whole book:
by the end of our journey you should have touched most of its methods at least once.

3.3.2.3 Endpoint - Route

How do we add a new endpoint to our App?
The route method is probably the simplest way to go about doing it - it is used in a Hello World! example
after all!

route takes two parameters:

* path, astring, possibly templated (e.g. "/{name}") to accommodate dynamic path segments;
* route, an instance of the Route struct.

Route combines a handler with a set of guards.
Guards specify conditions that a request must satisfy in order to “match” and be passed over to the handler.
From an implementation standpoint guards are implementors of the Guard trait: Guard :: check is where

the magic happens.

In our snippet we have

.route("/", web::get().to(greet))


https://z2p.io/f2d
https://z2p.io/f2c
https://z2p.io/f2a
https://z2p.io/fzf

22 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

" /" will match all requests without any segment following the base path - i.e. http://localhost:8000/.
web :: get() is a short-cut for Route :: new().guard(guard:: Get()) a.k.a. the request should be passed to
the handler if and only if its HT'TP method is GET.

You can start to picture what happens when a new request comes in: App iterates over all registered endpoints
until it finds a matching one (both path template and guards are satisfied) and passes over the request object
to the handler.

This is not 100% accurate but it is a good enough mental model for the time being.

What does a handler look like instead? What is its function signature?
We only have one example at the moment, greet:

async fn greet(req: HttpRequest) — impl Responder {
[...]

greet is an asynchronous function that takes an HttpRequest as input and returns something that imple-
ments the Responder trait?. A type implements the Responder trait if it can be converted into a HttpRe-
sponse - it is implemented off the shelf for a variety of common types (e.g. strings, status codes, bytes,
HttpResponse, etc.) and we can roll our own implementations if needed.

Do all our handlers need to have the same function signature of greet?
No! actix-web, channelling some forbidden trait black magic, allows a wide range of different function
signatures for handlers, especially when it comes to input arguments. We will get back to it soon enough.

3.3.2.4 Runtime - tokio

We drilled down from the whole HttpServer to a Route. Let’s look again at the whole main function:

//! src/main.rs

7 [ oool

#H tokio::main]
async fn main() — Result<(), std::io::Error> {
HttpServer ::new( || {
App :: new()
.route("/", web::get().to(greet))
.route("/{name}", web::get().to(greet))
)
.bind("127.0.0.1:8000")?
.run()
.await

2impl Responder is using the impl Trait syntax introduced in Rust 1.26 - you can find more details in Rust’s 2018 edition

guide.


https://z2p.io/fz2
https://z2p.io/fzq
https://z2p.io/fzq

3.3. OUR FIRST ENDPOINT: A BASIC HEALTH CHECK 23

What is #{ tokio ::main] doing here? Well, let’s remove it and see what happens! cargo check screams at
us with these errors:

error[EQ277]: “main” has invalid return type “impl std:: future::Future’
-— src/main.rs:8:20

8 | async fn main() — Result<(), std::io::Error> {

ANANANAAANANAANNAANNNN

| “main’ can only return types that implement “std::process::Termination’
= help: consider using “(), or a "Result’

error[E0752]: “main” function is not allowed to be “async’
-— src/main.rs:8:1

8 | async fn main() — Result<(), std::io::Error> {

| AV VY.V V YV VYV VY V.V.VVVVVVVVVVVVVVVVVVVVVVVN

"main” function is not allowed to be “async’

error: aborting due to 2 previous errors

We need main to be asynchronous because HttpServer :: run is an asynchronous method but main, the
entrypoint of our binary, cannot be an asynchronous function. Why is that?

Asynchronous programming in Rust is built on top of the Future trait: a future stands for a value that
may not be there yez. All futures expose a poll method which has to be called to allow the future to make
progress and eventually resolve to its final value. You can think of Rust’s futures as lazy: unless polled, there
is no guarantee that they will execute to completion. This has often been described as a pull model compared
to the push model adopted by other languages®.

Rust’s standard library, by design, does not include an asynchronous runtime: you are supposed to bring
one into your project as a dependency, one more crate under [dependencies] in your Cargo.toml. This
approach is extremely versatile: you are free to implement your own runtime, optimised to cater for the
specific requirements of your usecase (see the Fuchsia project or bastion’s actor framework).

This explains why main cannot be an asynchronous function: who is in charge to call pol1l on it?

There is no special configuration syntax that tells the Rust compiler that one of your dependencies is an
asynchronous runtime (e.g. as we do for allocators) and, to be fair, there is not even a standardised definition
of what a runtime is (e.g. an Executor trait).

You are therefore expected to launch your asynchronous runtime at the top of your main function and then
use it to drive your futures to completion.

You might have guessed by now what is the purpose of #{ tokio::main], but guesses are not enough to
satisfy us: we want to see 7z.

3Check out the release notes of async/await for more details. The talk by withoutboats at Rust LATAM 2019 is another
excellent reference on the topic. If you prefer books to talks, check out Futures Explained in 200 Lines of Rust .


https://z2p.io/fzz
https://z2p.io/fz4
https://z2p.io/fzx
https://z2p.io/fz6
https://z2p.io/fzv
https://z2p.io/fz5
https://z2p.io/fzw
https://z2p.io/fz7
https://z2p.io/fze

24 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

How?
tokio::main is a procedural macro and this is a great opportunity to introduce cargo expand, an awesome
addition to our Swiss army knife for Rust development:

Rust macros operate at the token level: they take in a stream of symbols (e.g. in our case, the whole main
function) and output a stream of new symbols which then gets passed to the compiler. In other words, the
main purpose of Rust macros is code generation.

How do we debug or inspect what is happening with a particular macro? You inspect the tokens it outputs!

That is exactly where cargo expand shines: it expands all macros in your code without passing the output
to the compiler, allowing you to step through it and understand what is going on.
Let’s use cargo expand to demystify #{ tokio::main]:

‘ cargo expand

Unfortunately, it fails:

error: the option “Z° is only accepted on the nightly compiler
error: could not compile “zero2prod-

We are using the stable compiler to build, test and run our code. cargo-expand, instead, relies on the
nightly compiler to expand our macros.
You can install the nightly compiler by running

rustup toolchain install nightly --allow-downgrade

Some components of the bundle installed by rustup might be broken/missing on the latest night1ly release:
--allow-downgrade tells rustup to find and install the latest nightly where all the needed components are
available.

You can use rustup default to change the default toolchain used by cargo and the other tools managed by
rustup. In our case, we do not want to switch over to nightly - we just need it to be available for cargo-
expand.

# “cargo-expand® will find the “nightly  toolchain automatically
# If we wanted to execute it directly via the “nightly ™ toolchain,
# we would instead invoke it via “cargo +nightly expand’

cargo expand

/7 L. ]

fn main() — Result<(), std::io::Error> {
let body = async move {



https://z2p.io/fz8

3.3. OUR FIRST ENDPOINT: A BASIC HEALTH CHECK 25

HttpServer::new( || {
App :: new()
.route("/", web::get().to(greet))
.route("/{name}", web::get().to(greet))
})
.bind("127.0.0.1:8000")?
.run()
.await
};
tokio:: runtime ::Builder ::new_multi_thread()
.enable_all()
.build()
.expect("Failed building the Runtime")
.block_on(body)

We can finally look at the code after macro expansion!

The main function that gets passed to the Rust compiler after #{ tokio :: main] has been expanded is indeed
synchronous, which explain why it compiles without any issue.

The key line is this:

tokio:: runtime ::Builder ::new_multi_thread()
.enable_all()
.build()
.expect("Failed building the Runtime")
.block_on(body)

We are starting tokio’s async runtime and we are using it to drive the future returned by HttpServer :: run
to completion.

In other words, the job of #{ tokio ::main] is to give us the illusion of being able to define an asynchronous
main while, under the hood, it just takes our main asynchronous body and writes the necessary boilerplate
to make it run on top of tokio’s runtime.

3.3.3 Implementing The Health Check Handler

We have reviewed all the moving pieces in actix_web’s Hello World! example: HttpServer, App, route and
tokio::main.

We definitely know enough to modify the example to get our health check working as we expect: return a
200 OK response with no body when we receive a GET request at /health_check.

Let’s look again at our starting point:



26 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

//' src/main.rs
use actix_web:: {web, App, HttpRequest, HttpServer, Responder};

async fn greet(req: HttpRequest) — impl Responder {
let name = req.match_info().get("name").unwrap_or("World");
format!("Hello {}'!", &name)

# tokio::main]
async fn main() — Result<(), std::io::Error> {
HttpServer ::new( || {
App :: new()
.route("/", web::get().to(greet))
.route("/{name}", web::get().to(greet))
D)
.bind("127.0.0.1:8000")?
.run()
.await

First of all we need a request handler. Mimicking greet we can start with this signature:

async fn health_check(req: HttpRequest) — impl Responder {
todo!()

We said that Responder is nothing more than a conversion trait into a Ht tpResponse. Returning an instance
of HttpResponse directly should work then!

Looking at its documentation we can use HttpResponse :: Ok to getaHttpResponseBuilder primed with a
200 status code. HttpResponseBuilder exposes a rich fluent API to progressively build out a HttpResponse
response, but we do not need it here: we can get a HttpResponse with an empty body by calling finish on

the builder.
Gluing everything together:

async fn health_check(req: HttpRequest) — impl Responder {
HttpResponse :: Ok().finish()

A quick cargo check confirms that our handler is not doing anything weird. A closer look at HttpRe-
sponseBuilder unveils that it implements Responder as well - we can therefore omit our call to finish and
shorten our handler to:


https://z2p.io/fzb
https://z2p.io/fzn
https://z2p.io/fzm

3.3. OUR FIRST ENDPOINT: A BASIC HEALTH CHECK 27

async fn health_check(req: HttpRequest) — impl Responder {
HttpResponse :: Ok()

The next step is handler registration - we need to add it to our App via route:

App :: new()
.route("/health_check", web::get().to(health_check))

Let’s look at the full picture:

//' src/main.rs
use actix_web:: {web, App, HttpRequest, HttpResponse, HttpServer, Responder};

async fn health_check(req: HttpRequest) — impl Responder {
HttpResponse :: 0k()

#H tokio::main]
async fn main() — Result<(), std::io::Error> {
HttpServer ::new( || {
App :: new()
.route("/health_check", web::get().to(health_check))
})
.bind("127.0.0.1:8000")?
.run()
.await

cargo check runs smoothly although it raises one warning:

warning: unused variable: “req’
-— src/main.rs:3:23

|

| async fn health_check(req: HttpRequest) — impl Responder {
| ANAN
|
|

help: if this is intentional, prefix it with an underscore: "_req’

note: “#{warn(unused_variables)]  on by default

Our health check response is indeed static and does not use any of the data bundled with the incoming
HTTP request (routing aside). We could follow the compiler’s advice and prefix req with an underscore...
or we could remove that input argument entirely from health_check:



28 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

async fn health_check() — impl Responder {
HttpResponse :: Ok()

Surprise surprise, it compiles! actix-web has some pretty advanced type magic going on behind the scenes
and it accepts a broad range of signatures as request handlers - more on that later.

What is left to do?
Well, a little test!

# Launch the application first in another terminal with “cargo run’
curl -v http://127.0.0.1:8000/health_check

x  Trying 127.0.0.1 ...

* TCP_NODELAY set

* Connected to localhost (127.0.0.1) port 8000 (#0)
> GET /health_check HTTP/1.1
> Host: localhost:8000

> User-Agent: curl/7.61.0
> Accept: */%

>

<

<

<

HTTP/1.1 200 OK
content-length: 0@
date: Wed, 05 Aug 2020 22:11:52 GMT

Congrats, you have just implemented your first working actix_web endpoint!

3.4 Our First Integration Test

/health_check was our first endpoint and we verified everything was working as expected by launching the
application and testing it manually via curl.

Manual testing though is time-consuming: as our application gets bigger, it gets more and more expensive to
manually check that all our assumptions on its behaviour are still valid every time we perform some changes.
We'd like to automate as much as possible: those checks should be run in our CI pipeline every time we are
committing a change in order to prevent regressions.

While the behaviour of our health check might not evolve much over the course of our journey, it is a good
starting point to get our testing scaffolding properly set up.

3.4.1 How Do You Test An Endpoint?

An APl is a means to an end: a tool exposed to the outside world to perform some kind of task (e.g. store a
document, publish an email, etc.).



3.4. OUR FIRSTINTEGRATION TEST 29

The endpoints we expose in our API define the contract between us and our clients: a shared agreement
about the inputs and the outputs of the system, its znzerface.

The contract might evolve over time and we can roughly picture two scenarios:

* backwards-compatible changes (e.g. adding a new endpoint);
* breaking changes (e.g. removing an endpoint or dropping a field from the schema of its output).

In the first case, existing API clients will keep working as they are. In the second case, existing integrations
are likely to break if they relied on the violated portion of the contract.

While we might zntentionally deploy breaking changes to our API contract, it is critical that we do not break
it accidentally.

What is the most reliable way to check that we have not introduced a user-visible regression?
Testing the API by interacting with it 7z the same exact way a user would: performing HTTP requests against
it and verifying our assumptions on the responses we receive.

This is often referred to as black box testing: we verify the behaviour of a system by examining its output
given a set of inputs without having access to the details of its internal implementation.

Following this principle, we won’t be satisfied by tests that call into handler functions directly - for example:

#Hcfg(test)]
mod tests {
use crate::health_check;

#H tokio:: test]
async fn health_check_succeeds() {
let response = health_check().await;
// This requires changing the return type of “health_check’
// from “impl Responder” to “HttpResponse”™ to compile
// You also need to import it with “use actix_web::HttpResponse !
assert!(response.status().is_success())

We have not checked that the handler is invoked on GET requests.
We have not checked that the handler is invoked with /health_check as the path.

Changing any of these two properties would break our API contract, but our test would still pass - not good
enough.

actix-web provides some conveniences to interact with an App without skipping the routing logic, but there
are severe shortcomings to its approach:


https://z2p.io/fz9

30 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

* migrating to another web framework would force us to rewrite our whole integration test suite. As
much as possible, we'd like our integration tests to be highly decoupled from the technology underpin-
ning our API implementation (e.g. having framework-agnostic integration tests is life-saving when
you are going through a large rewrite or refactoring!);

4

* due to some actix-web’s limitations*, we wouldn’t be able to share our App startup logic between our

production code and our testing code, therefore undermining our trust in the guarantees provided
by our test suite due to the risk of divergence over time.

We will opt for a fully black-box solution: we will launch our application at the beginning of each test and
interact with it using an off-the-shelf HTTP client (e.g. requwest).

3.4.2 Where Should I Put My Tests?

Rust gives you three options when it comes to writing tests:
* next to your code in an embedded test module, e.g.

// Some code I want to test

#Hcfg(test)]

mod tests {
// Import the code I want to test
use super :: *;

// My tests

* in an external tests folder, i.e.

src/
tests/
Cargo.toml
Cargo.lock

* as part of your public documentation (doc tests), e.g.

“App is a generic struct and some of the types used to parametrise it are private to the act ix_web project. Itis therefore impossible
(or, at least, so cumbersome that I have never succeeded at it) to write a function that returns an instance of App.


https://z2p.io/fzr
https://z2p.io/fzt
https://z2p.io/f2d
https://z2p.io/fzd

3.4. OUR FIRSTINTEGRATION TEST 31

/// Check if a number is even.

/// " Trust
/// use zero2prod::is_even;
11/

/// assert!(is_even(2));

/// assert!(!is_even(1));

/T

pub fn is_even(x: u64) — bool {
X %2 =120

What is the difference?

An embedded test module is part of your project, just hidden behind a configuration conditional check,
# cfg(test)]. Anything under the tests folder and your documentation tests, instead, are compiled in
their own separate binaries.

This has consequences when it comes to viszbility rules.

An embedded test module has privileged access to the code living next to it: it can interact with structs,
methods, fields and functions that have not been marked as public and would normally not be available to
a user of our code if they were to import it as a dependency of their own project.

Embedded test modules are quite useful for what I call iceberg projects, i.e. the exposed surface is very limited
(e.g. a couple of public functions), but the underlying machinery is much larger and fairly complicated
(e.g. tens of routines). It might not be straight-forward to exercise all the possible edge cases via the exposed
functions - you can then leverage embedded test modules to write unit tests for private sub-components to
increase your overall confidence in the correctness of the whole project.

Tests in the external tests folder and doc tests, instead, have exactly the same level of access to your code
that you would get if you were to add your crate as a dependency in another project. They are therefore used
mostly for integration testing, i.c. testing your code by calling it in the same exact way a user would.

Our email newsletter is not a library, therefore the line is a bit blurry - we are not exposing it to the world as
a Rust crate, we are putting it out there as an API accessible over the network.
Nonetheless we are going to use the tests folder for our API integration tests - it is more clearly separated
and it is easier to manage test helpers as sub-modules of an external test binary.

3.4.3 Changing Our Project Structure For Easier Testing

We have a bit of housekeeping to do before we can actually write our first test under /tests.

As we said, anything under tests ends up being compiled in its own binary - all our code under test is
imported as a crate. But our project, at the moment, is a bznary: it is meant to be executed, not to be shared.
Therefore we can’t import our main function in our tests as it is right now.

If you won’t take my word for it, we can run a quick experiment:


https://z2p.io/fzy

32 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

# Create the tests folder
mkdir -p tests

Create a new tests/health_check.rs file with

//! tests/health_check.rs
use zero2prod::main;
#Htest]

fn dummy_test() {
main()

cargo test should fail with something similar to

error[EQ432]: unresolved import “zero2prod’
-— tests/health_check.rs:1:5

1 | use zero2prod::main;
| ARAAANAAR yse of undeclared type or module ~zero2prod”

error: aborting due to previous error

For more information about this error, try “rustc --explain E0432°.

error: could not compile “zero2prod-.

We need to refactor our project into a library and a binary: all our logic will live in the library crate while the
binary itself will be just an entrypoint with a very slim main function.

First step: we need to change our Cargo. toml.

It currently looks something like this:

[packagel]
name = "zero2prod"
version = "0.1.0"

authors = ["Luca Palmieri <contact@lpalmieri.com>"]
edition = "2021"

[dependencies]

#[...]

We are relying on cargo’s default behaviour: unless something is spelled out, it will look for a src/main.rs
file as the binary entrypoint and use the package . name field as the binary name.
Looking at the manifest target specification, we need to add a 1ib section to add a library to our project:


https://z2p.io/fzu

3.4. OUR FIRSTINTEGRATION TEST 33

[package]
name = "zero2prod"
version = "0.1.0"

authors = ["Luca Palmieri <contact@lpalmieri.com>"]
edition = "2021"

[lib]

# We could use any path here, but we are following the community convention
# We could specify a library name using the “name” field. If unspecified,
# cargo will default to “package.name”, which is what we want.

path = "src/lib.rs"

[dependencies]
#[...1]

The lib. rs file does not exist yet and cargo won’t create it for us:

cargo check

error: couldn't read src/lib.rs: No such file or directory (os error 2)
error: aborting due to previous error

error: could not compile “zero2prod-

Let’s add it then - it can be empty for now.

touch src/lib.rs

Everything should be working now: cargo check passes and cargo run still launches our application.
Although 7z is working, our Cargo.toml file now does not give you at a glance the full picture: you see a
library, but you don’t see our binary there. Even if not strictly necessary, I prefer to have everything spelled
out as soon as we move out of the auto-generated vanilla configuration:

[packagel
name = "zero2prod"
version = "0.1.0"

authors = ["Luca Palmieri <contact@lpalmieri.com>"]
edition = "2021"

[lib]



34 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

path = "src/lib.rs"

# Notice the double square brackets: it's an array in TOML's syntax.

# We can only have one library in a project, but we can have multiple binaries!
# If you want to manage multiple libraries in the same repository

# have a look at the workspace feature - we'll cover it later on.

[[bin]]

path = "src/main.rs"

name = "zero2prod"

[dependencies]
#[...1]

Feeling nice and clean, let’s move forward.
For the time being we can move our main function, as it is, to our library (named run to avoid clashes):

//' main.rs
use zero2prod::run;

#H tokio::main]
async fn main() — Result<(), std::io::Error> {
run().await

//' src/lib.rs
use actix_web:: {web, App, HttpResponse, HttpServer};

async fn health_check() — HttpResponse {
HttpResponse :: Ok().finish()

// We need to mark “run’ as public.
// It is no longer a binary entrypoint, therefore we can mark it as async
// without having to use any proc-macro incantation.
pub async fn run() — Result<(), std::io::Error> {
HttpServer::new( || {
App ::new()
.route("/health_check", web::get().to(health_check))

b

.bind("127.0.0.1:8000")?

.run()




3.5 IMPLEMENTING OUR FIRSTINTEGRATION TEST 35

.await

Alright, we are ready to write some juicy integration tests!

3.5 Implementing Our First Integration Test

Our spec for the health check endpoint was:

When we receive a GET request for /health_check we return a 200 0K response with no body.

Let’s translate that into a test, filling in as much of it as we can:

//! tests/health_check.rs

// “tokio::test® is the testing equivalent of “tokio::main".
// It also spares you from having to specify the “#test]  attribute.
/!
// You can inspect what code gets generated using
// “cargo expand --test health_check™ (<- name of the test file)
t#H tokio:: test]
async fn health_check_works() {
// Arrange
spawn_app().await.expect("Failed to spawn our app.");
// We need to bring in ‘reqwest’
// to perform HTTP requests against our application.
let client = reqwest::Client::new();

// Act

let response = client
.get("http://127.0.0.1:8000/health_check")
.send()
.await
.expect("Failed to execute request.");

// Assert
assert!(response.status().is_success());
assert_eq!(Some(@), response.content_length());

// Launch our application in the background ~somehow~
async fn spawn_app() — Result<(), std::io::Error> {




36 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

todo! ()

#! Cargo.toml

#[...1]

# Dev dependencies are used exclusively when running tests or examples
# They do not get included in the final application binary!
[dev-dependencies]

reqwest = "0.12"

#[...]

Take a second to really look at this test case.

spawn_app is the only piece that will, reasonably, depend on our application code.

Everything else is entirely decoupled from the underlying implementation details - if tomorrow we decide to
ditch Rust and rewrite our application in Ruby on Rails we can still use the same test suite to check for
regressions in our new stack as long as spawn_app gets replaced with the appropriate trigger (e.g. a bash
command to launch the Rails app).

The test also covers the full range of properties we are interested to check:

* the health check is exposed at /health_check;
the health check is behind a GET method;
the health check always returns a 200;

the health check’s response has no body.

If this passes we are done.

The test as it is crashes before doing anything useful: we are missing spawn_app, the last piece of the integra-
tion testing puzzle.
Why don’t we just call run in there? Le.

//! tests/health_check.rs
/A

async fn spawn_app() — Result<(), std::io::Error> {
zero2prod :: run().await

Let’s try it out!

cargo test



3.5 IMPLEMENTING OUR FIRSTINTEGRATION TEST 37

Running target/debug/deps/health_check-fc74836458377166

running 1 test
test health_check_works
test health_check_works has been running for over 60 seconds

No matter how long you wait, test execution will never terminate. What is going on?

In zero2prod:: run we invoke (and await) HttpServer :: run. HttpServer:: run returns an instance of
Server - when we call .await it starts listening on the address we specified indefinitely: it will handle in-
coming requests as they arrive, but it will never shutdown or “complete” on its own.

This implies that spawn_app never returns and our test logic never gets executed.

We need to run our application as a background task.

tokio :: spawn comes quite handy here: tokio :: spawn takes a future and hands it over to the runtime for
polling, without waiting for its completion; it therefore runs concurrently with downstream futures and tasks
(e.g. our test logic).

Let’s refactor zero2prod :: run to return a Server without awaiting it:

//!' src/lib.rs

use actix_web:: {web, App, HttpResponse, HttpServer};
use actix_web::dev::Server;

async fn health_check() — HttpResponse {
HttpResponse :: Ok().finish()

// Notice the different signature!
// We return “Server  on the happy path and we dropped the “async” keyword
// We have no .await call, so it is not needed anymore.
pub fn run() — Result<Server, std::io::Error> {
let server = HttpServer:: new( || {
App ::new()
.route("/health_check", web::get().to(health_check))
b
.bind("127.0.0.1:8000")?
.run();
// No .await here!
Ok(server)

We need to amend our main. rs accordingly:


https://z2p.io/fzp

38

//!

CHAPTER 3. SIGN UP A NEW SUBSCRIBER

src/main.rs

use zero2prod::run;

#H tokio::main]
async fn main() — Result<(), std::io::Error> {

// Bubble up the io::Error if we failed to bind the address
// Otherwise call .await on our Server
run() ?.await

A quick cargo check should reassure us that everything is in order.

We can now write spawn_app:

//

//
/!
//
/!
fn

//! tests/health_check.rs

[...]

No .await call, therefore no need for “spawn_app  to be async now.
We are also running tests, so it is not worth it to propagate errors:
if we fail to perform the required setup we can just panic and crash
all the things.
spawn_app() {

let server = zero2prod::run().expect("Failed to bind address");

// Launch the server as a background task

// tokio::spawn returns a handle to the spawned future,

// but we have no use for it here, hence the non-binding let

let _ = tokio::spawn(server);

Quick adjustment to our test to accommodate the changes in spawn_app’s signature:

//

//! tests/health_check.rs

[...]

#H tokio:: test]
async fn health_check_works() {

// No .await, no .expect
spawn_app();
/.. ]

It’s time, let’s run that cargo test command!



3.5 IMPLEMENTING OUR FIRSTINTEGRATION TEST 39

cargo test

Running target/debug/deps/health_check-ald027e9ac92cd64

running 1 test
test health_check_works ... ok

test result: ok. 1 passed; 0 failed; @ ignored; 0 measured; 0 filtered out

Yay! Our first integration test is green!
Give yourself a pat on the back on my behalf for the second major milestone in the span of a single chapter.

3.5.1 Polishing

We got it working, now we need to have a second look and improve it, if needed or possible.

3.5.1.1 Clean Up

What happens to our app running in the background when the test run ends? Does it shut down? Does it
linger as a zombie somewhere?

Well, running cargo test multiple times in a row always succeeds - a strong hint that our 8000 port is getting
released at the end of each run, therefore implying that the application is correctly shut down.

A second look at tokio :: spawn’s documentation supports our hypothesis: when a tokio runtime is shut
down all tasks spawned on it are dropped. tokio :: test spins up a new runtime at the beginning of each
test case and they shut down at the end of each test case.

In other words, good news - no need to implement any clean up logic to avoid leaking resources between test
runs.

3.5.1.2 Choosing A Random Port

spawn_app will always try to run our application on port 8000 - not ideal:

¢ if port 8000 is being used by another program on our machine (e.g. our own application!), tests will
fail;
* if we try to run two or more tests in parallel only one of them will manage to bind the port, all others

will fail.

We can do better: tests should run their background application on a random available port.
First of all we need to change our run function - it should take the application address as an argument instead
of relying on a hard-coded value:



40 CHAPTER 3. SIGN UP A NEW SUBSCRIBER

//)' src/lib.rs
/L. ]

pub fn run(address: &str) — Result<Server, std::io::Error> {
let server = HttpServer::new( || {
App :: new()
.route("/health_check", web::get().to(health_check))
P
.bind(address)?
.run();
Ok(server)

All zero2prod :: run() invocations must then be changed to zero2prod:: run("127.0.0.1:8000") to pre-
serve the same behaviour and get the project to compile again.

How do we find a random available port for our tests?

The operating system comes to the rescue: we will be using port 0.

Port 0 is special-cased at the OS level: trying to bind port 0 will trigger an OS scan for an available port which
will then be bound to the application.

It is therefore enough to change spawn_app to

//! tests/health_check.rs
/L]

fn spawn_app() {
let server = zero2prod::run("127.0.0.1:0").expect("Failed to bind address");
let _ = tokio::spawn(server);

Done - the background app now runs on a random port every time we launch cargo test!
There is only a small issue... our test is failing®!

running 1 test
test health_check_works ... FAILED

failures:

---- health_check_works stdout ----

thread 'health_check_works' panicked at

5There is a remote chance that the OS ended up picking 8000 as random port and everything worked out smoothly. Cheers to
you lucky reader!


https://z2p.io/fzl

